GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction.
نویسندگان
چکیده
Glycogen synthase kinase-3 (GSK-3) is a multifunctional serine/threonine kinase that is usually inactivated by serine phosphorylation in response to extracellular cues. However, GSK-3 can also be activated by tyrosine phosphorylation, but little is known about the upstream signaling events and tyrosine kinase(s) involved. Here we describe a G protein signaling pathway leading to GSK-3 activation during lysophosphatidic acid (LPA)-induced neurite retraction. Using neuronal cells expressing the LPA(1) receptor, we show that LPA(1) mediates tyrosine phosphorylation and activation of GSK-3 with subsequent phosphorylation of the microtubule-associated protein tau via the G(i)-linked PIP(2) hydrolysis-Ca(2+) mobilization pathway. LPA concomitantly activates the Ca(2+)-dependent tyrosine kinase Pyk2, which is detected in a complex with GSK-3beta. Inactivation or knockdown of Pyk2 inhibits LPA-induced (but not basal) tyrosine phosphorylation of GSK-3 and partially inhibits LPA-induced neurite retraction, similar to what is observed following GSK-3 inhibition. Thus, Pyk2 mediates LPA(1)-induced activation of GSK-3 and subsequent phosphorylation of microtubule-associated proteins. Pyk2-mediated GSK-3 activation is initiated by PIP(2) hydrolysis and may serve to destabilize microtubules during actomyosin-driven neurite retraction.
منابع مشابه
Glycogen Synthase Kinase-3 Is Activated in Neuronal Cells by G 12 and G 13 by Rho-Independent and Rho-Dependent Mechanisms
Glycogen synthase kinase-3 (GSK-3) was generally considered a constitutively active enzyme, only regulated by inhibition. Here we describe that GSK-3 is activated by lysophosphatidic acid (LPA) during neurite retraction in rat cerebellar granule neurons. GSK-3 activation correlates with an increase in GSK-3 tyrosine phosphorylation. In addition, LPA induces a GSK-3mediated hyperphosphorylation ...
متن کاملActivation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction.
Neuronal cells undergo rapid growth cone collapse, neurite retraction, and cell rounding in response to certain G protein-coupled receptor agonists such as lysophosphatidic acid (LPA). These shape changes are driven by Rho-mediated contraction of the actomyosin-based cytoskeleton. To date, however, detection of Rho activation has been hampered by the lack of a suitable assay. Furthermore, the n...
متن کاملRoles of GSK-3beta and PYK2 signaling pathways in synaptic plasticity
Activity-dependent modification of synapses, as in long term potentiation (LTP) or long term depression (LTD), is widely believed to be a crucial mechanism for learning and memory. Molecular perturbations in these processes may underlie certain neuropsychiatric conditions. This thesis examines the role of two signaling pathways, glycogen synthase kinase 3 beta (GSK3beta) and proline-rich tyrosi...
متن کاملThe neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation.
The bioactive phospholipid lysophosphatidic acid (LPA) causes growth cone collapse and neurite retraction in neuronal cells. These changes are brought about by the action of a cell surface receptor coupled to specific G proteins that control morphology and motility through the action of a group of small GTPases, the Rho family of proteins. Many studies have focused on actin reorganization modul...
متن کاملEffects of eosinophils on nerve cell morphology and development: the role of reactive oxygen species and p38 MAP kinase.
The adhesion of eosinophils to nerve cells and the subsequent release of eosinophil products may contribute to the pathogenesis of conditions such as asthma and inflammatory bowel disease. In this study we have separately examined the consequences of eosinophil adhesion and degranulation for nerve cell morphology and development. Eosinophils induced neurite retraction of cultured guinea pig par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2006